
(LINFO2335 — Assignment Module 1)

Logic Programming Mission:

Implementing an SQL Interpreter in Prolog

K. Mens, J. Liénard, O. Goletti

February 2024

Abstract

For this mission, as an exercice on logic programming, you will have
to implement an SQL-like query language, using Prolog as your imple-
mentation language. As you undoubtedly know, SQL is a standard query
language for accessing and manipulating relational databases. Since both
SQL and Prolog are query languages, it doesn’t require too much of a
paradigm shift to implement SQL in Prolog. If your knowledge of SQL is
a bit rusty or non-existent, don’t worry, we will briefly revisit the language
and precisely specify the operations that you need to implement.

Introduction to SQL

Before getting started, this section provides a brief introduction to SQL.
For a more detailed introduction as well as additional examples you can
consult this SQL Tutorial. Or you can use this alternative introduction
to SQL with simple, interactive exercises.

SQL, which stands for “Structured Query Language” is used to define
and manipulate relational databases. In a way, relational databases and
SQL queries are somewhat similar to Prolog (even though Prolog is a
general-purpose language and much more powerful). You could implement
the data stored in a database as logic facts, and SQL queries which act
on that data as predicates in Prolog which act on those facts.

To help you during this project, we will give you some hints on how
to use SQL. If you already know the basics of the SQL language, you can
directly pass to the next section, even though reading this section as a
gentle reminder won’t hurt you either. Here are some examples of basic
SQL queries that you will need to implement or simulate in Prolog.

CREATE TABLE

Persons

Id FirstName LastName Age City

1

https://www.w3schools.com/sql/sql_intro.asp
https://sqlbolt.com


The query below will create a table Persons with five columns.

CREATE TABLE Persons (

Id int ,

FirstName varchar (255),

LastName varchar (255),

Age int ,

City varchar (255)

);

Id and Age will store an integer and FirstName, LastName and City will
contain strings with a maximum size of 255 characters.

In Prolog, we could represent such a table as a set of facts with five
arguments and to simplify things we will not specify the type for each
column. And to avoid confusion with Prolog variables that start with a
capital we will only use lowercase for the names of tables and columns.

persons(id,firstname ,lastName ,age ,city)

INSERT INTO

Persons
Id FirstName LastName Age City

1 "John" "Wick" 42 "London"

Once the table has been created, the insert query can be used to
populate the database, i.e. to add rows to an existing table with corre-
sponding values for each of its columns. It requires the name of the table
and the values that we want to insert.

INSERT INTO table_name VALUES (value1 , value2 , ...);

For example, if we want to add something to the table named Persons,
we could write:

INSERT INTO Persons VALUES (1,"John","Wick" ,42,"London");

This would add a new row to the table corresponding to a person with Id

1, Age 42, FirstName “John”, LastName “Wick” and City “London”. Note
that when inserting the values we don’t need to specify the column names.
The values are associated to their corresponding columns according to the
order of declaration of the columns.

We can also select only a few columns to fill when inserting a new
row. (For the other columns, a null value will then be inserted as default
value.) In that case the insert query would look like:

INSERT INTO table_name (column1 , column2) VALUES (value1 ,

value2);

For example, the following query

INSERT INTO Persons (FirstName , LastName , City) VALUES ("

Carla", "Bruni", "Paris");

would add a new row to the table Persons corresponding to a person with
first name “Carla”, last name “Bruni” and city “Paris”; for the unspecified
columns Id and Age, the default value null will be inserted.

2



Persons
Id FirstName LastName Age City

1 "John" "Wick" 42 "London"

null "Carla" "Bruni" null "Paris"

SELECT

The select keyword is by far the most important one in SQL as it is used
to retrieve data from tables in the database. Its most common form is:

SELECT selectors FROM tables WHERE conditions;

Where:

• selectors is the name of the columns for which we want to retrieve
their values;

• tables are the names of the tables in which we want to look up
these columns;

• conditions are some filtering conditions that can be applied on the
selected values.

For example, if we want to find the LastName and FirstName of each entry
in the table Persons that is older than 20 years, we have:

SELECT LastName , FirstName FROM Persons WHERE Age >20;

This query returns a result table of the form
LastName FirstName

"Wick" "John"

Mission Statement

Now that you know a bit more about SQL and how to make queries, we
will describe the different predicates that we ask you to define, in order to
implement an SQL-like language in Prolog. In particular, we ask you to
implement the predicates that follow. This will also entail using Definite
Clause Grammars (DCGs).

We will use the SWI Prolog notation for describing predicates (https://
www.swi-prolog.org/pldoc/man?section=preddesc). In particular, pa-
rameters that must be instantiated to a term upon calling the predicate
are preceded by a +, while parameters that can still be unbound upon
calling are preceded with -. Of course, the idea is that the predicate then
tries to bind these unbound parameters to actual values.

Do note that this notation is somewhat loose, since, usually, it is possible
to pass (partially/totally) instantiated values to - parameters in order to
perform a check rather than to bind the variables. Nevertheless, your im-
plementation should support at least the basic case (+ parameters fully
instantiated, and - parameters unbound). Additional possibilities are at
your own discretion.

Indications in bold below are valid for all predicates to be implemented.

Usage examples for the various predicates can be found in the test file that
we supply you (tests.pl). In case of doubt, contact the course assistant.

3

https://www.swi-prolog.org/pldoc/man?section=preddesc
https://www.swi-prolog.org/pldoc/man?section=preddesc


Required predicate

tables.

Prints the names of all existing tables, one per line (use writeln/1).

A table name is always an atom.

tables(-Tables).

Unify Tables with a list of the names of all existing tables.

create table(+Table, +Cols).

When this predicate is executed, the effect will be the creation of a new
table with the specified list of column names (order matters!).

A column name is always an atom.

If a table with the given name already exists, the predicate must throw a
descriptive exception (use throw/1).

All exceptions must have a descriptive error message.

cols(+Table, -Cols).

Unifies Cols with the list of columns for the specified table (in the same
order as they were supplied to create table/2).

If the given table does not exist, the predicate must throw a descriptive
exception (use throw/1).

row(+Table, -Row).

Unifies Row, one result at a time, with each row in the given Table.

If the given table does not exist, the predicate should fail.

4



rows(+Table).

Displays all rows in the given table, one per line (use writeln/1).

If the given table does not exist, the predicate must throw a descriptive
exception.

insert(+Table, +Row).

When this predicate is executed, the effect will be the addition of a given
row in the given table. The given row is a list of values for each of the
corresponding columns in the table (in the order in which the columns
were supplied to create table/2).

If the given table does not exist, the predicate must throw a descriptive
exception.

If the row does not have as many elements as the number of columns in
the table, the predicate must throw a descriptive exception.

drop(+Table).

When this predicate is executed, the effect will be the deletion of the given
table.

Do make sure that all of its rows are deleted as well, so that they don’t
magically reappear again if you would recreate a table with the same name
and signature later on.

If the given table does not exist, the predicate must throw a descriptive
exception.

delete(+Table).

When this predicate is executed, the effect will be the deletion of all rows
in the given table. The table itself should still exist after, but with no
more rows.

If the given table does not exist, the predicate must throw a descriptive
exception.

5



delete(+Table, +Conds).

When this predicate is executed, the effect will be the deletion of all rows
from the given table that match all of the given conditions. The table
must still exist after.

If the given table does not exist, the predicate must throw a descriptive
exception.

A condition is any Prolog predicate that could have been typed at the
prompt, but which may include selectors. Selectors are terms of the form
+<column> where <column> should be replaced by a column name.

(See tests.pl for some concrete usage examples.)

selec(+Table, +Selectors, +Conds, -Projection)

Note that the name of this predicate is selec (without t) for the simple
reason that select/4 is already a built-in Prolog predicate.

Table is the name of a single table.

Selectors is either * or a list of selectors. These define the resulting
projection. * means: select all column names from the table. Other
selectors explicitly specify which columns to pick. (See above for what
selectors look like.) For example, +name would select the column named
name.

Conds has the same form as in delete/2 and works the same way: only
rows that match all conditions are selected.

Finally, Projection unifies with <selectors>/<projection>, where:

• <selectors> is the list of requested selectors.

• <projection> is a list of values coming from a single row from the
given table that matches the conditions. This mean this predicate
should be able to backtrack to generate all projections that match
the query.

For example, selec(persons,[+id,+first],[],P) returns as first result
P = [+id, +first]/[0, "Jeffrey"].

To obtain all projections that match the query, one could use the Prolog
query findall(X, selec(Table, Selectors, Conds, X), Projections).
For example: findall(X, selec(persons,[+last],[],X), Projections)

returns Projections = [[+last]/["Bowman"],[+last]/["Michaels"],. . . ]

Or if you only want the rows (since the selectors are repeated):
findall(X, selec(Table, Selectors, Conds, /X), Projections).

6



For example:
findall(Values, selec(persons,[+id,+first],[],Values), Projections)

returns: Projections = [[0, "Jeffrey"], [1, "Lorena"], [2, "Joseph"],

. . .

selec(+TableOrTables, +Selectors, -Projection)

Simplified variant of the selec/4 predicate when there are no conditions
to be checked.

query(+Query, -Result)

query(+Query)

where Query is a string whose syntax is defined by the following grammar:

⟨query⟩ ::= ⟨select⟩ | ⟨insert⟩
⟨select⟩ ::= SELECT ⟨selectors⟩ FROM ⟨table⟩ [⟨where⟩];
⟨selectors⟩ ::= * | ⟨cols⟩
⟨cols⟩ ::= ⟨col⟩ [, ⟨cols⟩]
⟨where⟩ ::= WHERE ⟨cond⟩
⟨insert⟩ ::= INSERT INTO ⟨table⟩ [(⟨cols⟩)] VALUES (⟨values⟩);
⟨values⟩ ::= ⟨value⟩ [, ⟨values⟩]

About the notation: the pipe (|) and square brackets ([]) symbols in the
production rules above denote choice and optionality, respectively.

<table> and <col> denote table and column names (respectively). Ta-
ble names are atoms, while column names should follow the format out-
lined before (+<atom>). <cond> denotes a Prolog goal, in Prolog syntax
— following the same format as the possible values of items of the Conds

list passed to selec and delete.

<value> denotes a prolog value that can be stored into a row. You do
not need to handle parsing Prolog (<cond> and <value>) by yourself,
we’ll show how to do it below.

The semantics of this predicate is that of the SQL-predicate contained in
the Query string.

A “SELECT” query maps to the selec predicate, while an “INSERT”
query maps to the insert predicate. For “SELECT”, all instances of
<cond> (appearing in <where>) are mapped to the Conds parameter.
<selectors> map to the Selectors parameter. Tables names (or *) are
mapped to the Table parameter.

For “INSERT”, if the <cols> part is absent, the mapping to insert/2

is straightforward. If <cols> is present, you will have to:

7



1. reorder the values according to the columns that are present;

2. fill in the missing columns (if any) with a null default values.

Example:

query("INSERT INTO cities (+name, +state)

VALUES (\"Tempa\", \"Florida\");").

maps to (for instance):

insert(cities, ["Tempa", "Florida"]).

When used with “SELECT”:

• query/1 must display the results a bit like the rows predicate would.
You have some flexibility here (displaying the selected column names
is a nice touch for instance).

• query/2 must pass the Result parameter as last parameter to the
selec/4 predicate.

For “INSERT”, nothing needs to be printed by query/1 or in case of
success, and if query/2 is used the Result parameter can be ignored.

Getting Started

We supply you with one file called input.pl containing a sample database
which you can use to test your solution. You are allowed to change the
predicates used to store the data (on the other hand, there is no need to
— and it’s like this for a good reason).

If you want to be able to modify the database, do not forget the proper
:- dynamic declarations at the top of the input file. The input file already
includes these for the predicates we defined. You should also repeat these
declarations at the top of your solution file.

We also give you a file called tests.pl with a series of unit tests. As
we will repeat in the modalities section, your implementation must pass
all these tests for you to get a passing grade (>= 10) for this mission.

As a starting point, set up the tests. Copy the signatures you must
implement in your solution file solution.pl, remove the +/- annotations,
and make sure all tests fail but that no error is produced. Then, start
implementing the predicates. The order in which they are specified in this
document is an appropriate implementation order.

A few predicates that could help you:

• maplist/N allows you to apply a partial predicate over lists of pa-
rameters. Much nicer than iterating explicitly each time you have
to handle a list.

• Dynamic predicates (manipulated using assertz, retract, . . . ): nec-
essary to modify the database. To find out more about this, type
apropos(database).

8



• Predicates for analysing and constructing terms, in particular the
=.. operator and functor/3. To find out more about this, type
apropos(”Analysing and Constructing Terms”).

• forall/2, findall/3, (and maybe bagof/3, setof/3). As discussed
in the lab sessions.

• Meta-call predicates: call/N, apply/2.

• throw/1 to throw exceptions. Beware of the behaviour of this predi-
cate when backtracking ! It is usually recommended to cut a working
alternative before the fail case.
For example: mypredicate(X, Y, Z), ! ; throw("BOOM").

• string concat/3 to build nice error messages (note: you can con-
catenate strings with atoms using this predicate).

• The biggest difficulty in the project is the handling of selection con-
ditions. Think carefully about your plan for them before starting to
implement.

Parsing Prolog

To parse Prolog, we supply you with the following predicates:

:- use_module(library(dcg/basics)).

% DCG rule that checks if the remainder of the input

% starts with Delim (a list), but does not consume

% any input.

lookahead(Delim , L, L) :-

prefix(Delim , L).

% Checks if the remainder of the input starts with one

% of the items in the supplied list (as per lookahead /3).

lookaheads ([H|T]) -->

lookahead(H), ! ; lookaheads(T).

% Reads text until one of the delimiters in Delims is

% encountered , then unifies R with the Prolog term parsed

% from the text.

% ! Will crash the parse if a delimiter is encountered

% but the intervening text is not a Prolog term (you

% don’t have this handle this case).

prolog_term(R, Delims) -->

string(S), lookaheads(Delims), !, {

read_term_from_atom(S, R, []) }.

So for instance:

?- phrase(prolog_term(Term , [‘;‘]),

‘+kitchen(sink , 42, example(youhou/lol));‘, Rest).

Term = +kitchen(sink , 42, example(youhou/lol)).

Rest = [59]. % ‘;‘

Note that the + in front of kitchen is merely a functor, i.e. +x is the same
as +(x) and a+b is the same as +(a, b).

9



Modalities

First off, half of your grades (10/20) are determined by your score on the
tests we supply you in tests.pl. Hardcoding expected answers so that the
tests pass will be considered as cheating.

Here is how we will evaluate your code:

• With swipl in your solutions directory we will run
[solution].

then
[input].

and then
[tests].

Finally, we run the tests using
run tests(sql).

• We will additionally run a few secret tests.

• We will also carefully look at your code.

In particular, here are a few guidelines:

Code style. Write the signature of each rule on a separate line, then
one clause per line (some exceptions are admissible, use your judge-
ment). Try not to go over 80 characters per line (the occasional
exception is admissible). Most of the rest is common sense: use de-
scriptive variable names, split complex predicates when (and if) it
makes sense, extract common idioms etc.

Make your code idiomatic. Getting it to work is only half the chal-
lenge, we want you to show that you’ve integrated how to think in
Prolog. After you have a solution, look at your code and ask yourself
what might be improved.

Don’t embarrass yourself: read the Getting Started section above.

Comments. All predicates you implement should be commented as nec-
essary (which is to say most predicates should probably be com-
mented unless they are so obvious that they can be understood at a
glance).
It’s also useful to include a signature with the +/- notations in a
comment, especially when you use pattern matching inside the ac-
tual signature (e.g. mypredicate([H|T]) could use a comment to
explain what the the list parameter being pattern-matched is!).
If some part of your logic bears further explanations / clarifications,
don’t hesitate to include a small comment paragraph. Treat your
code as a document.

Readability. This goes with the other points, but it bears repeating.
Since your code will be read by human beings (your dear teaching
assistant and professor) you want to make it as clear as possible to
make them happy.

Terseness. The priority is style and readability. But given that all else
is equal, the shortest code is the better code.

If you have any further questions, please ask them to your course
assistant.

10



Deliverables

Follow these instructions to the letter, or you will LOSE POINTS.

The project deadline is Friday 15 March. (That is, the last day of week
6 of the second quadrimester.) We will use the week after that to run
your tests and look at your code. If based on that we have sufficient infor-
mation to give you a passing grade, we will grade you based on the code
received and the results of the tests (i.e., the tests which we gave you as
well as some additional tests).

If, however, we need some clarifications on how to understand or run your
code, we may invite you for an oral discussion.

You are strongly requested to work in pairs. If you work in pairs, of course
each of the students is supposed to understand in detail all of the code
that was produced by both students. If you work in pairs, please indicate
the names of both partners clearly at the top of your solution file.

At the project deadline you must post on Moodle (section: Mission 1
submission page) the following files (and only those, with exactly these
names):

• solution.pl - The full implementation of your SQL framework.

• input.pl - Your own version of the input database. This must
contain exactly the same data as the database you were given, but
you may use different predicates to store the data.

We do not request a separate report for this mission. As stated above,
your code is the report. So make sure it is readable and well commented.
Treat your code as a document. Make it readable. Don’t hesitate to
include small commented paragraphs with explanations, assumptions or
implementation choices, where needed.

Final warning: We will be intransigent towards plagiarism. We are well
aware of existing solutions, and will cross check students’ submissions,
both manually and automatically. You may discuss the assignment be-
tween yourself, but are not allowed to share any code, nor to borrow any
code you found online or elsewhere. We will find out. We always do. And
we won’t be happy if we do.

Additional warning: The use of artificial intelligence tools and large
language models like ChatGPT for this mission will not be allowed. If
you have questions about Prolog, ask the professor or the course assistant,
use StackOverflow, or check the webpages or community of SWI-Prolog.
They will likely provide you more correct questions to your answers than
ChatGPT too. The goal is to learn the language, not to learn to use a
tool than can solve the problem for you.

11


